3.770 \(\int \frac{(c+d x)^{5/2}}{(a+b x)^{3/2}} \, dx\)

Optimal. Leaf size=138 \[ \frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}+\frac{15 d \sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b^3}+\frac{15 \sqrt{d} (b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{7/2}}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}} \]

[Out]

(15*d*(b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b^3) + (5*d*Sqrt[a + b*x]*(c + d*x)^(3/2))/(2*b^2) - (2*(c +
 d*x)^(5/2))/(b*Sqrt[a + b*x]) + (15*Sqrt[d]*(b*c - a*d)^2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d
*x])])/(4*b^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0672786, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {47, 50, 63, 217, 206} \[ \frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}+\frac{15 d \sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b^3}+\frac{15 \sqrt{d} (b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{7/2}}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(5/2)/(a + b*x)^(3/2),x]

[Out]

(15*d*(b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b^3) + (5*d*Sqrt[a + b*x]*(c + d*x)^(3/2))/(2*b^2) - (2*(c +
 d*x)^(5/2))/(b*Sqrt[a + b*x]) + (15*Sqrt[d]*(b*c - a*d)^2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d
*x])])/(4*b^(7/2))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(c+d x)^{5/2}}{(a+b x)^{3/2}} \, dx &=-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}}+\frac{(5 d) \int \frac{(c+d x)^{3/2}}{\sqrt{a+b x}} \, dx}{b}\\ &=\frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}}+\frac{(15 d (b c-a d)) \int \frac{\sqrt{c+d x}}{\sqrt{a+b x}} \, dx}{4 b^2}\\ &=\frac{15 d (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^3}+\frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}}+\frac{\left (15 d (b c-a d)^2\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{8 b^3}\\ &=\frac{15 d (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^3}+\frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}}+\frac{\left (15 d (b c-a d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{4 b^4}\\ &=\frac{15 d (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^3}+\frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}}+\frac{\left (15 d (b c-a d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{4 b^4}\\ &=\frac{15 d (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^3}+\frac{5 d \sqrt{a+b x} (c+d x)^{3/2}}{2 b^2}-\frac{2 (c+d x)^{5/2}}{b \sqrt{a+b x}}+\frac{15 \sqrt{d} (b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.0620908, size = 71, normalized size = 0.51 \[ -\frac{2 (c+d x)^{5/2} \, _2F_1\left (-\frac{5}{2},-\frac{1}{2};\frac{1}{2};\frac{d (a+b x)}{a d-b c}\right )}{b \sqrt{a+b x} \left (\frac{b (c+d x)}{b c-a d}\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(5/2)/(a + b*x)^(3/2),x]

[Out]

(-2*(c + d*x)^(5/2)*Hypergeometric2F1[-5/2, -1/2, 1/2, (d*(a + b*x))/(-(b*c) + a*d)])/(b*Sqrt[a + b*x]*((b*(c
+ d*x))/(b*c - a*d))^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{ \left ( dx+c \right ) ^{{\frac{5}{2}}} \left ( bx+a \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(5/2)/(b*x+a)^(3/2),x)

[Out]

int((d*x+c)^(5/2)/(b*x+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.78441, size = 971, normalized size = 7.04 \begin{align*} \left [\frac{15 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2} +{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} x\right )} \sqrt{\frac{d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \,{\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt{b x + a} \sqrt{d x + c} \sqrt{\frac{d}{b}} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \,{\left (2 \, b^{2} d^{2} x^{2} - 8 \, b^{2} c^{2} + 25 \, a b c d - 15 \, a^{2} d^{2} +{\left (9 \, b^{2} c d - 5 \, a b d^{2}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{16 \,{\left (b^{4} x + a b^{3}\right )}}, -\frac{15 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2} +{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} x\right )} \sqrt{-\frac{d}{b}} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{b x + a} \sqrt{d x + c} \sqrt{-\frac{d}{b}}}{2 \,{\left (b d^{2} x^{2} + a c d +{\left (b c d + a d^{2}\right )} x\right )}}\right ) - 2 \,{\left (2 \, b^{2} d^{2} x^{2} - 8 \, b^{2} c^{2} + 25 \, a b c d - 15 \, a^{2} d^{2} +{\left (9 \, b^{2} c d - 5 \, a b d^{2}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{8 \,{\left (b^{4} x + a b^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/16*(15*(a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2 + (b^3*c^2 - 2*a*b^2*c*d + a^2*b*d^2)*x)*sqrt(d/b)*log(8*b^2*d^2*
x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*
(b^2*c*d + a*b*d^2)*x) + 4*(2*b^2*d^2*x^2 - 8*b^2*c^2 + 25*a*b*c*d - 15*a^2*d^2 + (9*b^2*c*d - 5*a*b*d^2)*x)*s
qrt(b*x + a)*sqrt(d*x + c))/(b^4*x + a*b^3), -1/8*(15*(a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2 + (b^3*c^2 - 2*a*b^2*
c*d + a^2*b*d^2)*x)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*
x^2 + a*c*d + (b*c*d + a*d^2)*x)) - 2*(2*b^2*d^2*x^2 - 8*b^2*c^2 + 25*a*b*c*d - 15*a^2*d^2 + (9*b^2*c*d - 5*a*
b*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^4*x + a*b^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c + d x\right )^{\frac{5}{2}}}{\left (a + b x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(5/2)/(b*x+a)**(3/2),x)

[Out]

Integral((c + d*x)**(5/2)/(a + b*x)**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.53567, size = 387, normalized size = 2.8 \begin{align*} \frac{1}{4} \, \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}{\left (\frac{2 \,{\left (b x + a\right )} d^{2}{\left | b \right |}}{b^{5}} + \frac{9 \,{\left (b^{10} c d^{3}{\left | b \right |} - a b^{9} d^{4}{\left | b \right |}\right )}}{b^{14} d^{2}}\right )} - \frac{15 \,{\left (\sqrt{b d} b^{2} c^{2}{\left | b \right |} - 2 \, \sqrt{b d} a b c d{\left | b \right |} + \sqrt{b d} a^{2} d^{2}{\left | b \right |}\right )} \log \left ({\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{8 \, b^{5}} - \frac{4 \,{\left (\sqrt{b d} b^{3} c^{3}{\left | b \right |} - 3 \, \sqrt{b d} a b^{2} c^{2} d{\left | b \right |} + 3 \, \sqrt{b d} a^{2} b c d^{2}{\left | b \right |} - \sqrt{b d} a^{3} d^{3}{\left | b \right |}\right )}}{{\left (b^{2} c - a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )} b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

1/4*sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)*d^2*abs(b)/b^5 + 9*(b^10*c*d^3*abs(b) - a*b
^9*d^4*abs(b))/(b^14*d^2)) - 15/8*(sqrt(b*d)*b^2*c^2*abs(b) - 2*sqrt(b*d)*a*b*c*d*abs(b) + sqrt(b*d)*a^2*d^2*a
bs(b))*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/b^5 - 4*(sqrt(b*d)*b^3*c^3*abs(b
) - 3*sqrt(b*d)*a*b^2*c^2*d*abs(b) + 3*sqrt(b*d)*a^2*b*c*d^2*abs(b) - sqrt(b*d)*a^3*d^3*abs(b))/((b^2*c - a*b*
d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)*b^4)